3.1.27 \(\int \frac {1}{(e \cot (c+d x))^{3/2} (a+a \cot (c+d x))} \, dx\) [27]

Optimal. Leaf size=111 \[ \frac {\text {ArcTan}\left (\frac {\sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{a d e^{3/2}}-\frac {\text {ArcTan}\left (\frac {\sqrt {e}-\sqrt {e} \cot (c+d x)}{\sqrt {2} \sqrt {e \cot (c+d x)}}\right )}{\sqrt {2} a d e^{3/2}}+\frac {2}{a d e \sqrt {e \cot (c+d x)}} \]

[Out]

arctan((e*cot(d*x+c))^(1/2)/e^(1/2))/a/d/e^(3/2)-1/2*arctan(1/2*(e^(1/2)-cot(d*x+c)*e^(1/2))*2^(1/2)/(e*cot(d*
x+c))^(1/2))/a/d/e^(3/2)*2^(1/2)+2/a/d/e/(e*cot(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.31, antiderivative size = 111, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {3650, 3734, 3613, 211, 3715, 65} \begin {gather*} \frac {\text {ArcTan}\left (\frac {\sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{a d e^{3/2}}-\frac {\text {ArcTan}\left (\frac {\sqrt {e}-\sqrt {e} \cot (c+d x)}{\sqrt {2} \sqrt {e \cot (c+d x)}}\right )}{\sqrt {2} a d e^{3/2}}+\frac {2}{a d e \sqrt {e \cot (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((e*Cot[c + d*x])^(3/2)*(a + a*Cot[c + d*x])),x]

[Out]

ArcTan[Sqrt[e*Cot[c + d*x]]/Sqrt[e]]/(a*d*e^(3/2)) - ArcTan[(Sqrt[e] - Sqrt[e]*Cot[c + d*x])/(Sqrt[2]*Sqrt[e*C
ot[c + d*x]])]/(Sqrt[2]*a*d*e^(3/2)) + 2/(a*d*e*Sqrt[e*Cot[c + d*x]])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3613

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2*(d^2/f),
Subst[Int[1/(2*c*d + b*x^2), x], x, (c - d*Tan[e + f*x])/Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x
] && EqQ[c^2 - d^2, 0]

Rule 3650

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[b^2*(a + b*Tan[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(a^2 + b^2)*(b*c - a*d))), x] + D
ist[1/((m + 1)*(a^2 + b^2)*(b*c - a*d)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[a*(b*c -
 a*d)*(m + 1) - b^2*d*(m + n + 2) - b*(b*c - a*d)*(m + 1)*Tan[e + f*x] - b^2*d*(m + n + 2)*Tan[e + f*x]^2, x],
 x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && I
ntegerQ[2*m] && LtQ[m, -1] && (LtQ[n, 0] || IntegerQ[m]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] &&
NeQ[a, 0])))

Rule 3715

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rule 3734

Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(a^2 + b^2), Int[(c + d*Tan[e + f*
x])^n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Dist[(A*b^2 - a*b*B + a^2*C)/(a^2 +
b^2), Int[(c + d*Tan[e + f*x])^n*((1 + Tan[e + f*x]^2)/(a + b*Tan[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e,
f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !GtQ[n, 0] &&  !LeQ[n, -
1]

Rubi steps

\begin {align*} \int \frac {1}{(e \cot (c+d x))^{3/2} (a+a \cot (c+d x))} \, dx &=\frac {2}{a d e \sqrt {e \cot (c+d x)}}+\frac {2 \int \frac {-\frac {a e^2}{2}-\frac {1}{2} a e^2 \cot (c+d x)-\frac {1}{2} a e^2 \cot ^2(c+d x)}{\sqrt {e \cot (c+d x)} (a+a \cot (c+d x))} \, dx}{a e^3}\\ &=\frac {2}{a d e \sqrt {e \cot (c+d x)}}+\frac {\int \frac {-\frac {1}{2} a^2 e^2-\frac {1}{2} a^2 e^2 \cot (c+d x)}{\sqrt {e \cot (c+d x)}} \, dx}{a^3 e^3}-\frac {\int \frac {1+\cot ^2(c+d x)}{\sqrt {e \cot (c+d x)} (a+a \cot (c+d x))} \, dx}{2 e}\\ &=\frac {2}{a d e \sqrt {e \cot (c+d x)}}-\frac {\text {Subst}\left (\int \frac {1}{\sqrt {-e x} (a-a x)} \, dx,x,-\cot (c+d x)\right )}{2 d e}-\frac {(a e) \text {Subst}\left (\int \frac {1}{-\frac {1}{2} a^4 e^4-e x^2} \, dx,x,\frac {-\frac {1}{2} a^2 e^2+\frac {1}{2} a^2 e^2 \cot (c+d x)}{\sqrt {e \cot (c+d x)}}\right )}{2 d}\\ &=-\frac {\tan ^{-1}\left (\frac {\sqrt {e}-\sqrt {e} \cot (c+d x)}{\sqrt {2} \sqrt {e \cot (c+d x)}}\right )}{\sqrt {2} a d e^{3/2}}+\frac {2}{a d e \sqrt {e \cot (c+d x)}}+\frac {\text {Subst}\left (\int \frac {1}{a+\frac {a x^2}{e}} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{d e^2}\\ &=\frac {\tan ^{-1}\left (\frac {\sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{a d e^{3/2}}-\frac {\tan ^{-1}\left (\frac {\sqrt {e}-\sqrt {e} \cot (c+d x)}{\sqrt {2} \sqrt {e \cot (c+d x)}}\right )}{\sqrt {2} a d e^{3/2}}+\frac {2}{a d e \sqrt {e \cot (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 2.17, size = 176, normalized size = 1.59 \begin {gather*} \frac {2 \left (1+2 \cot ^2(c+d x)+\cot ^4(c+d x)-\sqrt {2} \text {ArcTan}\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right ) \cot ^{\frac {5}{2}}(c+d x) \csc ^2(2 (c+d x))+\sqrt {2} \text {ArcTan}\left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right ) \cot ^{\frac {5}{2}}(c+d x) \csc ^2(2 (c+d x))+2 \text {ArcTan}\left (\sqrt {\cot (c+d x)}\right ) \cot ^{\frac {5}{2}}(c+d x) \csc ^2(2 (c+d x))\right ) \sin ^4(c+d x)}{a d e \sqrt {e \cot (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/((e*Cot[c + d*x])^(3/2)*(a + a*Cot[c + d*x])),x]

[Out]

(2*(1 + 2*Cot[c + d*x]^2 + Cot[c + d*x]^4 - Sqrt[2]*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]]*Cot[c + d*x]^(5/2)*
Csc[2*(c + d*x)]^2 + Sqrt[2]*ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]]*Cot[c + d*x]^(5/2)*Csc[2*(c + d*x)]^2 + 2*
ArcTan[Sqrt[Cot[c + d*x]]]*Cot[c + d*x]^(5/2)*Csc[2*(c + d*x)]^2)*Sin[c + d*x]^4)/(a*d*e*Sqrt[e*Cot[c + d*x]])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(318\) vs. \(2(92)=184\).
time = 0.50, size = 319, normalized size = 2.87

method result size
derivativedivides \(-\frac {2 e^{2} \left (-\frac {1}{e^{3} \sqrt {e \cot \left (d x +c \right )}}+\frac {-\frac {\left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 e}-\frac {\sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 \left (e^{2}\right )^{\frac {1}{4}}}}{2 e^{3}}-\frac {\arctan \left (\frac {\sqrt {e \cot \left (d x +c \right )}}{\sqrt {e}}\right )}{2 e^{\frac {7}{2}}}\right )}{d a}\) \(319\)
default \(-\frac {2 e^{2} \left (-\frac {1}{e^{3} \sqrt {e \cot \left (d x +c \right )}}+\frac {-\frac {\left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 e}-\frac {\sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 \left (e^{2}\right )^{\frac {1}{4}}}}{2 e^{3}}-\frac {\arctan \left (\frac {\sqrt {e \cot \left (d x +c \right )}}{\sqrt {e}}\right )}{2 e^{\frac {7}{2}}}\right )}{d a}\) \(319\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*cot(d*x+c))^(3/2)/(a+a*cot(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-2/d/a*e^2*(-1/e^3/(e*cot(d*x+c))^(1/2)+1/2/e^3*(-1/8/e*(e^2)^(1/4)*2^(1/2)*(ln((e*cot(d*x+c)+(e^2)^(1/4)*(e*c
ot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+2*a
rctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)-2*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1))-1/8/(
e^2)^(1/4)*2^(1/2)*(ln((e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)+(e^2)
^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+2*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)-2*arcta
n(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)))-1/2/e^(7/2)*arctan((e*cot(d*x+c))^(1/2)/e^(1/2)))

________________________________________________________________________________________

Maxima [A]
time = 0.52, size = 88, normalized size = 0.79 \begin {gather*} \frac {{\left (\frac {\sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + \sqrt {2} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right )}{a} + \frac {2 \, \arctan \left (\frac {1}{\sqrt {\tan \left (d x + c\right )}}\right )}{a} + \frac {4 \, \sqrt {\tan \left (d x + c\right )}}{a}\right )} e^{\left (-\frac {3}{2}\right )}}{2 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cot(d*x+c))^(3/2)/(a+a*cot(d*x+c)),x, algorithm="maxima")

[Out]

1/2*((sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2/sqrt(tan(d*x + c)))) + sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2/
sqrt(tan(d*x + c)))))/a + 2*arctan(1/sqrt(tan(d*x + c)))/a + 4*sqrt(tan(d*x + c))/a)*e^(-3/2)/d

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 213 vs. \(2 (80) = 160\).
time = 2.57, size = 213, normalized size = 1.92 \begin {gather*} -\frac {{\left (\sqrt {2} \cos \left (2 \, d x + 2 \, c\right ) + \sqrt {2}\right )} \arctan \left (-\frac {{\left (\sqrt {2} \cos \left (2 \, d x + 2 \, c\right ) - \sqrt {2} \sin \left (2 \, d x + 2 \, c\right ) + \sqrt {2}\right )} \sqrt {\frac {\cos \left (2 \, d x + 2 \, c\right ) + 1}{\sin \left (2 \, d x + 2 \, c\right )}}}{2 \, {\left (\cos \left (2 \, d x + 2 \, c\right ) + 1\right )}}\right ) + 2 \, {\left (\cos \left (2 \, d x + 2 \, c\right ) + 1\right )} \arctan \left (\frac {\sqrt {\frac {\cos \left (2 \, d x + 2 \, c\right ) + 1}{\sin \left (2 \, d x + 2 \, c\right )}} \sin \left (2 \, d x + 2 \, c\right )}{\cos \left (2 \, d x + 2 \, c\right ) + 1}\right ) - 4 \, \sqrt {\frac {\cos \left (2 \, d x + 2 \, c\right ) + 1}{\sin \left (2 \, d x + 2 \, c\right )}} \sin \left (2 \, d x + 2 \, c\right )}{2 \, {\left (a d \cos \left (2 \, d x + 2 \, c\right ) e^{\frac {3}{2}} + a d e^{\frac {3}{2}}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cot(d*x+c))^(3/2)/(a+a*cot(d*x+c)),x, algorithm="fricas")

[Out]

-1/2*((sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*arctan(-1/2*(sqrt(2)*cos(2*d*x + 2*c) - sqrt(2)*sin(2*d*x + 2*c) +
sqrt(2))*sqrt((cos(2*d*x + 2*c) + 1)/sin(2*d*x + 2*c))/(cos(2*d*x + 2*c) + 1)) + 2*(cos(2*d*x + 2*c) + 1)*arct
an(sqrt((cos(2*d*x + 2*c) + 1)/sin(2*d*x + 2*c))*sin(2*d*x + 2*c)/(cos(2*d*x + 2*c) + 1)) - 4*sqrt((cos(2*d*x
+ 2*c) + 1)/sin(2*d*x + 2*c))*sin(2*d*x + 2*c))/(a*d*cos(2*d*x + 2*c)*e^(3/2) + a*d*e^(3/2))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {\int \frac {1}{\left (e \cot {\left (c + d x \right )}\right )^{\frac {3}{2}} \cot {\left (c + d x \right )} + \left (e \cot {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx}{a} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cot(d*x+c))**(3/2)/(a+a*cot(d*x+c)),x)

[Out]

Integral(1/((e*cot(c + d*x))**(3/2)*cot(c + d*x) + (e*cot(c + d*x))**(3/2)), x)/a

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cot(d*x+c))^(3/2)/(a+a*cot(d*x+c)),x, algorithm="giac")

[Out]

integrate(1/((a*cot(d*x + c) + a)*(e*cot(d*x + c))^(3/2)), x)

________________________________________________________________________________________

Mupad [B]
time = 0.64, size = 123, normalized size = 1.11 \begin {gather*} \frac {2}{a\,d\,e\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}+\frac {\mathrm {atan}\left (\frac {\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )}{a\,d\,e^{3/2}}+\frac {\sqrt {2}\,\left (2\,\mathrm {atan}\left (\frac {\sqrt {2}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{2\,\sqrt {e}}\right )+2\,\mathrm {atan}\left (\frac {\sqrt {2}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{2\,\sqrt {e}}+\frac {\sqrt {2}\,{\left (e\,\mathrm {cot}\left (c+d\,x\right )\right )}^{3/2}}{2\,e^{3/2}}\right )\right )}{4\,a\,d\,e^{3/2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((e*cot(c + d*x))^(3/2)*(a + a*cot(c + d*x))),x)

[Out]

2/(a*d*e*(e*cot(c + d*x))^(1/2)) + atan((e*cot(c + d*x))^(1/2)/e^(1/2))/(a*d*e^(3/2)) + (2^(1/2)*(2*atan((2^(1
/2)*(e*cot(c + d*x))^(1/2))/(2*e^(1/2))) + 2*atan((2^(1/2)*(e*cot(c + d*x))^(1/2))/(2*e^(1/2)) + (2^(1/2)*(e*c
ot(c + d*x))^(3/2))/(2*e^(3/2)))))/(4*a*d*e^(3/2))

________________________________________________________________________________________